Assessment Schedule - 2007

Mathematics: Find and use straightforward derivatives and integrals (90286)

Evidence Statement

	Assessment Criteria	No.	Evidence	Code	Judgement	Sufficiency
	Find and use straightforward derivatives and integrals.	1	$f(x) = x^{3} - 4x^{2} + x + c$ $c = 12$ $f(x) = x^{3} - 4x^{2} + x + 12$	A2	BOTH anti-derivative and <i>c</i> required. No alternative.	ACHIEVEMENT: TWO A including at least ONE of each of
ACHIEVEMENT		3	$\frac{dy}{dx} = 3x^2 - 5$ When $x = -2$, gradient = 7 $\int_0^3 (x^2 - 2x + 4) dx$	A1	BOTH derivative and value are required.	A1 and A2 Replacement Evidence: Qs 5, 6, 7 and 8
ACI			$= \left[\frac{x^3}{3} - x^2 + 4x\right]_0^3$ $= (9 - 9 + 12) - (0)$ $= 12$	A2	BOTH integral and area required.	
		4	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3 - \frac{1}{2}x = 3.5$ $x = -1$	A1	BOTH the derivative and <i>x</i> are required.	
ACHIEVEMENT WITH MERIT	Apply calculus techniques to solve straightforward problems.	5	$\frac{\mathrm{d}V}{\mathrm{d}h} = 9 + 0.05h$		Units not required in any question.	ACHIEVEMENT WITH MERIT:
			When $h = 15$ $\frac{dV}{dh} = 9.75 \frac{cm^3}{cm}$	A1 M	Derivative must be shown.	Achievement plus TWO M
		6	v = -2t + c $c = 18$		Integration needs to be shown.	OR THREE M
			v = -2t + 18 $0 = -2t + 18$	A2 M	No alternative.	Replacement Evidence:
		7	t = 9 (seconds) P'(x) = 0 $3x^2 - 24x + 36 = 0$	1V1	Derivative must be shown.	Q 8
			$x^{2} - 8x + 12 = 0$ $(x - 2)(x - 6) = 0$	A1		
			Minimum profit occurs When $x = 6$, $P = 3$.		N. I.	
			Profit = \$3,000. (Also acceptable: 3).	M	No alternative.	

	Apply calculus techniques to solve problems.	8	$\left[\frac{2x^3}{3} - \frac{3x^2}{x} - 2x\right]_0^2 = -4\frac{2}{3}$ $kx - 2 = 0$		Accept ONE minor error in working.	ACHIEVEMENT WITH EXCELLENCE:
ACHIEVEMENT WITH EXCELLENCE			$x = \frac{2}{k}$ $\left[\frac{kx^2}{2} - 2x\right]_0^{\frac{2}{k}} = -\frac{2}{k}$ $\left[\frac{kx^2}{2} - 2x\right]_{\frac{2}{k}}^k = 2k - 4 + \frac{2}{k}$	A2		Merit plus E
ACHIEVEMENT WITH EXCELLEN			$\left[\frac{kx^2}{2} - 2x\right]_{\frac{2}{k}}^k = 2k - 4 + \frac{2}{k}$			
			Area = $4\frac{2}{3} + (2k - 4 + \frac{2}{k}) - \frac{2}{k} = 8$	M		
			$k = \frac{11}{3}$	E	Or equivalent.	

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
Find and use straightforward derivatives and integrals.	Apply calculus techniques to solve straightforward problems.	Apply calculus techniques to solve problems.
2 × A including at least 1 each of A1 and A2.	Achievement plus 2 × M or 3 × M	Merit plus Code E

The following Mathematics-specific marking conventions may also have been used when marking this paper:

- Errors are circled.
- Omissions are indicated by a caret (A).
- NS may have been used when there was not sufficient evidence to award a grade.
- CON may have been used to indicate 'consistency' where an answer is obtained using a prior, but incorrect answer and NC if the answer is not consistent with wrong working.
- CAO is used when the 'correct answer only' is given and the assessment schedule indicates that more evidence was required.
- # may have been used when a correct answer is obtained but then further (unnecessary) working results in an incorrect final answer being offered.
- RAWW indicates right answer, wrong working.
- **R** for 'rounding error' and **PR** for 'premature rounding' resulting in a significant round-off error in the answer (if the question required evidence for rounding).
- U for incorrect or omitted units (if the question required evidence for units).
- MEI may have been used to indicate where a minor error has been made and ignored.